

Experience with and expectations for the drive laser for the APS PC gun

Yuelin Li

Advance Photon Source, Argonne National Laboratory

Layout

* Current APS drive laser

Configuration, and features
Problems and solutions
Current performances, and surprises
Summary

* Expectation for the next drive laser

Operation and performance requirement Some commercial systems, new ideas Adaptive emittance optimization loop Summary

* Acknowledgement

Role of the APS pc gun drive lase ton Source

Saturated at wavelength as short as 150 nm 100-200 fs pulses, energy 60-250 μJ **Photocathode** rf gun **Undulators Bunch Compression** APS Linear Accelerator **Beam Control & Optical Diagnostics** Synchrotron e- Beam & APS PAR **Photon Beam** LEUTL SYSTEM LAYOUT 150 m Metrology & **Experiments** 1 nC 0.5-10 ps 3 mm mrad 200-450 MeV

APS pc gun drive laser

Flash lamp-pumped Nd:Glass

Chirped pulse amplification laser

Features

Environment Monitoring

Temperature and humidity

Laser monitoring

Oscillator

Energy (off line), pulse duration (off line), mode, spectrum,

Amplifier

Cavity buildup, mode, pulse duration, FROG (offline)

UV

Energy, mode, virtual cathode

Laser control

Off line: Pulse duration, divergence, spot size on VC

On line: Pulse energy, trajectory

Semi automatic cathode cleaning

FROG traces of the laser

Semi automatic cathode cleaning urce

xPixel

normQE as a function of xPixel and yPixel

Before

After

Problems and solutions

Poor beam profile

mode inhomogenity higher order mode

•Adding pinholes at both end of the cavity

Imaging

Poor pointing stability

50% rms

•Sealing the transport line

Poor output

up to 50% rms not enough energy

(From originally unknown 1800 l/mm, 76% efficiency to JY 1740 l/mm, 90% efficiency)

Poor reliability

mechanical broken rods optical damage

- •Scheduling flash lamp replacement
- Switching cathode from Cu to Mg

Adding pinholes to cavity

Intense maintenance

•Hiring a baby sitter

IR Spatial Profile

Virtual cathode images

Size: variable Profile: 30% flat top

Pointing stability: ~2%

Frequency conversion

The power in the second harmonics at matched phase is (with pump depletion)

$$\frac{P_{2\omega}}{P_{\omega}} = \tanh^{2} \left(\frac{L}{L_{NL}}\right)$$

$$L_{NL} = \frac{1}{4\pi d_{eff}} \sqrt{\frac{2\varepsilon_{0}n_{\omega}^{2}n_{2\omega}c\lambda_{\omega}^{2}}{I_{\omega}}}$$

For BBO, type I critical phase match

	$\lambda_{\omega}(\mu m)$	n_{ω}	$n_{2\omega}$	d _{eff} (pm/v)
SHG	1.053	1.6551	1.6551	1.9
FHG	0.527	1.6749	1.6749	2.0

$$L_{NL2\omega} = \frac{6913}{(P_{\omega} / A)^{1/2}}$$

$$L_{NL4\omega} = \frac{3443}{(P_{\omega} / A)^{1/2}}$$

At low intensity $P_{4\omega} \propto P_{\omega}^{4}$

At high intensity $P_{4\omega} \propto P_{\omega}$

Frequency conversion

Expected Conversion efficiency

Measured

Green/IR 53% UV/green 20%

	1.064 µm	0.532 μm
Angular acceptance (mrad cm)	0.53	0.16
Temperature bandwidth (K cm)	51	4.0
Wavelength bandwidth (nm cm)	2	0.073

UV Energy stability

Lamps at 1 million shots

Lamps at 10 million shots

Surprise: Timing stability

Lock device RF source

Laser oscillator TBWP GLX-200 oscillator at 119 MHz TBWP CLX-1000 timing stabilizer with spec <2 ps Gigatronics 2856 MHz/24 or Crystal oscillator 119 MHz

119 MHz rf waveform

Laser rising edge

Laser rf waveform

Laser falling edge

Summary on current laser

* Finally usable in stability and profile

However: it is stretching its limit

* Flash lamps age quickly

10 million shots is the margin we use now 3-weeks of 24-7 operation at 6 Hz Needs careful attention for stable operation at the end

* Laser rods break at about 15 million shots or less

Time consuming

Changes laser characteristics: divergence, mode size, optical path, etc....

No room for further improvement

Energy stability, reliability, etc..

Time to dream for a new drive laser

The future APS drive laser

Role

Primary electron beam source for both LEUTL and APS in routine operation (LEUTL is becoming a user facility)

Key operational requirement

Turn key system

Reliable: no break down during normal operation

Stable over long time

Minimum maintenance

Deliver up to 5 nC per shot for injection to APS

The role of cathodes

Cathode	(E _{gap} + E _A)/eV	Q.E. (263nm)	Life	Laser energy/nC
Cu	4.5-5.6 eV	2×10 ⁻⁶ (APS) 3×10 ⁻⁵ (Nguyen, LANL) 4×10 ⁻⁵ (GTF)	Long	2.4 mJ 160 μJ 120 μJ
Mg	3.78 eV	1.3×10 ⁻⁴ (Spring-8) 1.3×10 ⁻³ (APS) 3×10 ⁻³ (Nguyen, LANL)	Long	36 μJ 3.6 μJ 1.6 μJ
Cs ₂ Te	3.5 eV	5% (Nguyen, LANL) 1% (FNAL)	Months	
CsI	6.4 eV	Est. 10 ⁻³	Long	
K ₂ CsSb	2.1 eV	10%	Hours	
Cs ₃ Sb	2.05 eV	6%	Unstable	

Laser: Dream vs reality

	Current	Dream	Reality
Pulse energy on cathode ^a	<500 μJ	100 μJ	<u></u>
Pulse repetition rate ^b	6 Hz	60 Hz	\odot
Energy stability	2% rms	0.5% rms	\odot
	5-10% p-p	2% p-p	\odot
Pulse length	2-10 ps	2-10 ps	\odot
Pulse shaping	Possible	Y	© R&D needed
Profile shaping	Semi	Y	© R&D needed
Spatial homogeneity	50%	10%	© R&D needed
Pointing stability	1-5% rms	1% p-p	© R&D needed
Timing jitter to rf	6 ps rms	<0.5 ps	Demonstrated
	(2 ps spec)		
Advanced features			
Active hydrothermal control	N	Y	\odot
Automatic energy control	Possible	Y	\odot
Automatic emittance optimization	N	YYY	© R&D needed

- a. Based on APS QE for a Mg cathode of about 1.3×10⁻³, for 1 nC of charge from the gun.
- b. With long life cathode, single pulse per rf cycle. For a SC rf with higher duty factor the requirement is different.

Commercial Ti:Sa amplifier systems

Advertised performances

Make and model	Rep rate	Energy	Stability	Mode
Clark MXR, CPA-2010	0.2-2 kHz,	>0.6 mJ,	1%	TM00
	(Built in active hydrothermal Stabilization)			
Spectra Physics, Spitfire	1-5 KHz	0.7 mJ	1% (p-p)	TM00, 1.5 diffraction limit
Spectra Physics, Hurricane	1-5 KHz	0.7 mJ	1.5% (p-p)	TM00, 1.5 diffraction limit
Femto Lasers, FemtoPower	1 kHz	0.8 mJ	2% (p-p)	TM00, 2 diffraction limit
Coherent RegA9000	300 kHz	4 μJ	2% (p-p)	TM00, 2 diffraction limit

An idea: Gain less amplifier

Example: 300 mW, 100 MHz, for loss=10⁻⁴, E_{out}=30 μJ @100 kHz

Advantages

Ultra stable: $E_{out} = n < E_s > 0$

Linear device: easier to shape

Low jitter: no jitter between seed and output

Jones and Ye, Opt Lett 27, 1848 (2002)

Commercial lockable oscillators

Advertised performance

rep rate	jitter spec
up to 150 MHz	<1 ps
up to 150 MHz	<1 ps
up to 100 MHz	<1 ps
up to 100 MHz	<2 ps
	up to 150 MHz up to 150 MHz up to 100 MHz

Laser TBWP TIGER 200 oscillator at 119 MHz

Locking TBWP CLX1100

RF source HP 8665B at 119 MHz

Test results 8 ps

"Subfemtosecond timing jitter between two independent, actively synchronized, mode locked lasers"

Shelton et al, Opt Lett 27, 312 (2002)

Adaptive pulse manipulation

Measurement techniques

Laser longitudinal profile

FROG is the choice in IR, green, SHG in UV, Polarization gating

Summary

Laser

Laser technology is mature enough for the basic requirement

Advanced features

R&D is needed to adapt existing adaptive pulse shaping and waveform control technologies

Acknowledgement

Gil Travish (former laser commander)

Ned Arnold Sandra Biedron

Mike Hahne Kathy Harkay

Robert Laird John Lewellen

Stephen Milton Antothny Petryla

Arthur Grelick

Rich Kodenhoven

Greg Markovich

Supported by the U. S. Department of Energy, Office of Basic Energy Sciences

Contract No. W-31-109-ENG-38